Regionally proximal relation of order d along arithmetic progressions and nilsystems
نویسندگان
چکیده
منابع مشابه
On rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کاملPrimes in arithmetic progressions
Strengthening work of Rosser, Schoenfeld, and McCurley, we establish explicit Chebyshev-type estimates in the prime number theorem for arithmetic progressions, for all moduli k ≤ 72 and other small moduli.
متن کاملArithmetic Progressions on Conics.
In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...
متن کاملDistinct Distances and Arithmetic Progressions
According to a theorem of Szemerédi (1975), for every positive integer k and every δ > 0, there exists S = S(k, δ) such that every subset X of {1, 2, . . . , S} of size at least δS contains an arithmetic progression with k terms. Here we generalize the above result to any set of real numbers. For every positive integer k and every c > 0, there exists N = N(k, c) such that every set of n ≥ N poi...
متن کاملRainbow Arithmetic Progressions
In this paper, we investigate the anti-Ramsey (more precisely, anti-van der Waerden) properties of arithmetic progressions. For positive integers n and k, the expression aw([n], k) denotes the smallest number of colors with which the integers {1, . . . , n} can be colored and still guarantee there is a rainbow arithmetic progression of length k. We establish that aw([n], 3) = Θ(log n) and aw([n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Mathematics
سال: 2020
ISSN: 1674-7283,1869-1862
DOI: 10.1007/s11425-019-1607-5